Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Clin Microbiol ; 62(2): e0121123, 2024 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-38284762

RESUMO

The reliability of Fourier-transform infrared (FT-IR) spectroscopy for Klebsiella pneumoniae typing and outbreak control has been previously assessed, but issues remain in standardization and reproducibility. We developed and validated a reproducible FT-IR with attenuated total reflectance (ATR) workflow for the identification of K. pneumoniae lineages. We used 293 isolates representing multidrug-resistant K. pneumoniae lineages causing outbreaks worldwide (2002-2021) to train a random forest classification (RF) model based on capsular (KL)-type discrimination. This model was validated with 280 contemporaneous isolates (2021-2022), using wzi sequencing and whole-genome sequencing as references. Repeatability and reproducibility were tested in different culture media and instruments throughout time. Our RF model allowed the classification of 33 capsular (KL)-types and up to 36 clinically relevant K. pneumoniae lineages based on the discrimination of specific KL- and O-type combinations. We obtained high rates of accuracy (89%), sensitivity (88%), and specificity (92%), including from cultures obtained directly from the clinical sample, allowing to obtain typing information the same day bacteria are identified. The workflow was reproducible in different instruments throughout time (>98% correct predictions). Direct colony application, spectral acquisition, and automated KL prediction through Clover MS Data analysis software allow a short time-to-result (5 min/isolate). We demonstrated that FT-IR ATR spectroscopy provides meaningful, reproducible, and accurate information at a very early stage (as soon as bacterial identification) to support infection control and public health surveillance. The high robustness together with automated and flexible workflows for data analysis provide opportunities to consolidate real-time applications at a global level. IMPORTANCE We created and validated an automated and simple workflow for the identification of clinically relevant Klebsiella pneumoniae lineages by FT-IR spectroscopy and machine-learning, a method that can be extremely useful to provide quick and reliable typing information to support real-time decisions of outbreak management and infection control. This method and workflow is of interest to support clinical microbiology diagnostics and to aid public health surveillance.


Assuntos
Bactérias , Klebsiella pneumoniae , Humanos , Klebsiella pneumoniae/genética , Reprodutibilidade dos Testes , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Sequenciamento Completo do Genoma , Proteínas Mutadas de Ataxia Telangiectasia
2.
Microbiol Spectr ; 10(6): e0326822, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36453910

RESUMO

It was recently proposed that Enterococcus faecium colonizing the human gut (previous clade B) actually corresponds to Enterococcus lactis. Our goals were to develop a PCR assay to rapidly differentiate these species and to discuss the main phenotypic and genotypic differences from a clinical perspective. The pan-genome of 512 genomes of E. faecium and E. lactis strains was analyzed to assess diversity in genes between the two species. Sequences were aligned to find the best candidate gene for designing species-specific primers, and their accuracy was tested with a collection of 382 enterococci. E. lactis isolates from clinical origins were further characterized by whole-genome sequencing (Illumina). Pan-genome analysis resulted in 12 gene variants, with gene gluP (rhomboid protease) being selected as the candidate for species differentiation. The nucleotide sequence of gluP diverged by 90 to 92% between sets, which allowed species identification through PCR with 100% specificity and no cross-reactivity. E. lactis strains were greatly pan-susceptible and not host specific. Hospital E. lactis isolates were susceptible to clinically relevant antibiotics, lacked infection-associated virulence markers, and were associated with patients presenting risk factors for enhanced bacterial translocation. Here, we propose a PCR-based assay using gluP for easy routine differentiation between E. faecium and E. lactis that could be implemented in different public health contexts. We further suggest that E. lactis, a dominant human gut species, can cross the gut barrier in severely ill, immunodeficient, and surgical patients. Knowing that bacterial translocation may be a sepsis promoter, the relevance of infections caused by E. lactis strains, even if they are pan-susceptible, should be explored. IMPORTANCE Enterococcus faecium is a WHO priority pathogen that causes severe and hard-to-treat human infections. It was recently proposed that E. faecium colonizing the human gut (previous clade B) actually corresponds to Enterococcus lactis; therefore, some of the human infections occurring globally are being misidentified. In this work, we developed a PCR-based rapid identification method for the differentiation of E. faecium and E. lactis and discussed the main phenotypic and genotypic differences of these species from a clinical perspective. We identified the gluP gene as the best candidate, based on the phylogenomic analysis of 512 published pan-genomes, and validated the PCR assay with a comprehensive collection of 382 enterococci obtained from different sources. Further detailed analysis of clinical E. lactis strains showed that they are highly susceptible to antibiotics and lack the typical virulence markers of E. faecium but are able to cause severe human infections in immunosuppressed patients, possibly in part due to gut barrier translocation.


Assuntos
Enterococcus faecium , Enterococcus , Infecções por Bactérias Gram-Positivas , Reação em Cadeia da Polimerase , Humanos , Antibacterianos , Enterococcus faecium/genética , Enterococcus faecium/isolamento & purificação , Genoma Bacteriano , Infecções por Bactérias Gram-Positivas/diagnóstico , Infecções por Bactérias Gram-Positivas/microbiologia , Enterococcus/genética , Enterococcus/isolamento & purificação
3.
J Antimicrob Chemother ; 75(9): 2416-2423, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32607549

RESUMO

OBJECTIVES: poxtA is the most recently described gene conferring acquired resistance to linezolid, a relevant antibiotic for treating enterococcal infections. We retrospectively screened for poxtA in diverse enterococci and aimed to characterize its genetic/genomic contexts. METHODS: poxtA was screened by PCR in 812 enterococci from 458 samples (hospitals/healthy humans/wastewater/animals/retail food) obtained in Portugal/Angola/Tunisia (1996-2019). Antimicrobial susceptibility testing was performed for 13 antibiotics (EUCAST/CLSI). poxtA stability (∼500 generations), transfer (filter mating), clonality (SmaI-PFGE) and location (S1-PFGE/hybridization) were tested. WGS (Illumina-HiSeq) was performed for clonal representatives. RESULTS: poxtA was detected in Enterococcus faecium from six samples (1.3%): a healthy human (rectal swab) in Porto, Portugal (ST32/2001); four farm cows (milk) in Mateur, Tunisia (ST1058/2015); and a hospitalized patient (faeces) in Matosinhos, Portugal (ST1058/2015). All expressed resistance to linezolid (MIC = 8 mg/L), chloramphenicol, tetracycline and erythromycin, with variable resistance to ciprofloxacin and streptomycin. ST1058-poxtA-carrying isolates from Tunisia and Portugal differed by two SNPs and had similar plasmid content. poxtA, located in an IS1216-flanked Tn6246-like element, co-hybridized with fexB on one or more plasmids per isolate (one to three plasmids of 30-100 kb), was stable after several generations and transferred only from ST1058. ST1058 strains carried resistance/virulence genes (Efmqnr/acm) possibly induced under selective quinolone treatment. CONCLUSIONS: poxtA has been circulating in Portugal since at least 2001, corresponding to the oldest description worldwide to date. We also extend the reservoir of poxtA to bovines. The similar linezolid-resistant poxtA-carrying strains colonizing humans and livestock on different continents, and without a noticeable relationship, suggests a recent transmission event or convergent evolution of E. faecium populations in different hosts and geographic regions.


Assuntos
Enterococcus faecium , Infecções por Bactérias Gram-Positivas , Angola , Animais , Antibacterianos/farmacologia , Bovinos , Farmacorresistência Bacteriana , Enterococcus faecalis , Enterococcus faecium/genética , Infecções por Bactérias Gram-Positivas/epidemiologia , Infecções por Bactérias Gram-Positivas/veterinária , Humanos , Linezolida/farmacologia , Testes de Sensibilidade Microbiana , Portugal/epidemiologia , Estudos Retrospectivos , Tunísia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA